Continuity of Functions

Lecturer: Xue Deng

The discontinuous point and kinds

Def :
(1) $\lim _{x \rightarrow c} f(x)$ exists,
$f(c)$ exists, $(c$ is in the domain of $f)$
(3) $\lim _{x \rightarrow c} f(x)=f(c)$

Any one of these three fails, then f is discontinuous at c.

Two kinds of discontinuity:

I discontinuous point (discontinuity point of the first kind):
$f\left(x_{0}-0\right)$ and $f\left(x_{0}+0\right)$ both exist,
If $f\left(x_{0}-0\right)=f\left(x_{0}+0\right), x_{0}$ removable discontinuity.
If $f\left(x_{0}-0\right) \neq f\left(x_{0}+0\right), x_{0}$ jump discontinuity.
II discontinuous point (discontinuity point of the second kind):
$f\left(x_{0}-0\right)$ and $f\left(x_{0}+0\right)$ at least one does not exist.
If one of the two limits is ∞, x_{0} infinity discontinuity.
If one of two limits is changeable, x_{0} oscillatory discontinuity.

infinity discontinuity

Eg 1: Function $f(x)=\frac{1}{x}$, $f(c)$ does not exist, $(c$ is in the domain of $f)$
$f(x)$ at $x=0$ is not defined, $f(0)$ does not exist \Rightarrow discontinuity.
and $\lim _{x \rightarrow 0^{+}} f(x)=+\infty, \lim _{x \rightarrow 0^{-}} f(x)=-\infty$
$x=x_{0}$ infinity discontinuity.

oscillatory discontinuity

Eg 2: $\lim _{x \rightarrow c} f(x)$ does not exist

Function $f(x)= \begin{cases}\sin \frac{1}{x}, & x \neq 0, \\ 0, & x=0,\end{cases}$
(1) $f(0)$ exists;
(2) $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist;

$x \rightarrow 0, \sin \frac{1}{x}$ is changeable between 1 and -1 .
$x=0$ oscillatory discontinuity.

jump discontinuity

Eg 3: Function $f(x)=\left\{\begin{array}{cc}-x, & x \leq 0, \\ 1+x, & x>0,\end{array} \quad \quad \lim _{x \rightarrow c} f(x)\right.$ does not exist
(1) $f(0)$ exists;
(2) $\lim _{x \rightarrow 0^{-}}(-x)=0 \quad \lim _{x \rightarrow 0^{+}}(1+x)=1$
$f(0-0) \neq f(0+0)$, limdoes not exist.

$$
\boldsymbol{x}=\mathbf{O} \quad \text { jump discontinuity. }
$$

removable discontinuity

Eg 4: Discuss function $\quad \lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right)$,

$$
f(x)=\left\{\begin{array}{lr}
2 \sqrt{x}, & 0 \leq x<1, \\
1, & x=1 \\
1+x, & x>1,
\end{array} \text { is continuous at } x=1\right. \text { or not. }
$$

$\because f(1)=1$

$$
f(1-0)=2, \quad f(1+0)=2,
$$

$\therefore \lim _{x \rightarrow 1} f(x)=2=f(1)=2$
$\therefore x=1$ discontinuity. and is removable discontinuity.

Then, $f(x)=\left\{\begin{array}{cc}2 \sqrt{x}, & 0 \leq x<1, \\ 1+x, & x \geq 1,\end{array} \quad\right.$ is continuous at $x=1$.

Note

As to removable point x_{0}, let $\lim _{x \rightarrow x_{0}} f(x)=A$,
And supplement or change the function value of x_{0}

Such that equal to A, x_{0} is continuous point.

removable discontinuity

Eg : $\quad y=\frac{x^{2}-1}{x-1}$ is not defined at $x=1$,

$$
x=1 \text { discontinuity } .
$$

But $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1}(x+1)=2$
If supplement: let $f(1)=2$,

Then function is continuous at $x=1$.
So $x=1$ is called removable.

Relationship of continuity and limit:

$f(x)$ is continuous at $x_{0} \rightleftharpoons$ the limit of $f(x)$ exist at x_{0}
? Find the discontinuity of $f(x)=\frac{1}{1-\frac{a}{1-\boldsymbol{a}}}$,
When $x=0, x=1$, not defined, discontinuity.

$$
x=0, \text { by } \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{1-e^{\frac{x}{1-x}}}=\infty,
$$

So $x=0$ infinity discontinuity.

$$
\begin{aligned}
x=1, \text { by } & \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{1}{1-e^{\frac{x}{1-x}}}=\mathbf{+} \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{1-e^{\frac{x}{1-x}}}=\mathbf{1}
\end{aligned}
$$

So $\quad x=1$ jump discontinuity.

Exercise

© Let $f(x)=\left\{\begin{array}{cl}\frac{\sin x}{x} & x<0 \\ a & x=0 \\ b+x \sin \frac{1}{x} & x>0\end{array} \quad a, b=\right.$?
(1) $\lim _{x \rightarrow 0} f(x)$ exist; (2) $f(x)$ is continuous at $x=0$.

By $\lim _{x \rightarrow 0^{-}} f(x)=1, \lim _{x \rightarrow 0^{+}} f(x) b$, so
(1) $\lim _{x \rightarrow 0} f(x)$ exist; only need to

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x), \text { namely, } \quad b=1 \quad(a \text { any number }) .
$$

(2) $f(x)$ is continuous at $x=0$. Only need to

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0), \text { namely } a=b=1
$$

Intermediate Value Theorem

Lemma (Existence Theorem of Equation Root)

Zero Point Theorem

Let $f(x) \in C[a, b]$,
$f(a) \cdot f(b)<0(f(a)$ and $f(b)$ have different signs)
then there is at least one point $\quad \xi \in(a, b), \quad f(\xi)=0$,
ξ is the root of equation $f(x)=0$, sometimes called zero point

Geometrical meaning:

Theorems of Continuity of Functions

Th F

If f is defined on $[a, b]$
f is continuous on $[a, b]\} \Rightarrow \exists c \in[a, b]$, such that $f(c)=w$.

$$
\forall w \in[f(a), f(b)]
$$

首
Proof : (1)

$$
f(a)=f(b) \Rightarrow c=a \Rightarrow f(c)=w, c \in[a, b] .
$$

Theorems of Continuity of Functions

Th F

$$
\left.\begin{array}{l}
\text { If } f \text { is defined on }[a, b] \\
f \text { is continuous on }[a, b] \\
\forall w \in[f(a), f(b)]
\end{array}\right\} \Rightarrow \exists c \in[a, b] \text {, such that } f(c)=w .
$$

Proof: (2) $\quad f(a) \neq f(b)$
Auxiliary function $\phi(x)=f(x)-w$, then $\phi(x) \in C[a, b]$,
and $\phi(a)=f(a)-w=f(a)-w$, Zero Theorem
and $\phi(b)=f(b)-w=f(b)-w$,
$\therefore \phi(a) \cdot \phi(b)<0, \exists c \in(a, b)$, such that

$$
\phi(c)=0, \text { namely }, \quad \phi(c)=f(c)-w=0, \quad \therefore f(c)=w
$$

Geometrical meaning:

There is at least one intersection point of

$$
y=f(x) \text { and line } y=C
$$

Questions and Answers

Eg 1: \quad Show that the equation $x^{3}-8 x+1=0$ has at least one root in $(0,1)$.

Let $f(x)=x^{3}-8 x+1 \in C[0,1]$
and $f(0)=1>0, f(1)=-6<0$,
By Intermediate Value Theorem,
$\exists c \in(0,1), \quad$ such that $f(c)=0, \quad$ namely, $c^{3}-8 c+1=0$,
$\therefore x^{3}-8 x+1=0$ has at least one root in $(0,1)$.

Questions and Answers

Eg 2: $f(x) \in C[a, b]$, and $f(a)<a, f(b)>b$.
Prove $\exists \xi \in(a, b)$, such that $f(\xi)=\xi$.
Auxiliary function

$$
\begin{aligned}
& \text { Let } F(x)=f(x)-x, F(x) \in \mathrm{C}[a, b], \\
& \text { and } F(a)=f(a)-a<\mathbf{0}, \\
& F(b)=f(b)-b>\mathbf{0}, \\
& \exists \xi \in(a, b), \text { s.t. } F(\xi)=f(\xi)-\xi=\mathbf{0},
\end{aligned}
$$

Namely, $f(\xi)=\xi$.

Questions and Answers

Eg 3: $f(x) \in \mathrm{C}[a, b], \alpha, \beta>0$, prove: $\exists \xi \in[a, b]$, sucht that $f(\xi)=\frac{\alpha f(a)+\beta f(b)}{\alpha+\beta}$.
(1) $f(a)=f(b), \quad \xi=a$.
(2) $f(a)<f(b), \quad(f(a)>f(b)$, similar way $)$.

Let $\mu=\frac{\alpha f(a)+\beta f(b)}{\alpha+\beta}$
Obviously, $f(a)<\mu<f(b)$,
$\exists \xi \in(a, b)$, s.t. $f(\xi)=\mu$,
Namely, $f(\xi)=\frac{\alpha f(a)+\beta f(b)}{\alpha+\beta}$.

Questions and Answers

Eg 4: $f(x), g(x) \in \mathrm{C}[a, b]$, and $f(a)<g(a), \lim _{\delta x \rightarrow 0} f(b)>g(b)$, prove: $\exists \xi \in[a, b]$, s.t. $f(\xi)=g(\xi)$.

Let $F(x)=f(x)-g(x)$, then
$F(x) \in \mathrm{C}[a, b]$, and
$F(a)=f(a)-g(a)<\mathbf{0} ;$
$F(b)=f(b)-g(b)>0 . \quad$ Zero Theorem
$\exists \xi \in(a, b), \quad$ s.t. $F(\xi)=0, \quad$ namely, $\quad f(\xi)=g(\xi)$.

